🤔 Почему моя модель машинного обучения резко теряет точность после выхода в продакшн, хотя на тестах всё было отлично
Потому что модель обучалась на «чистом» датасете, а в продакшне сталкивается с реальными, грязными и непредсказуемыми данными.
🧩Типовые причины падения качества:
1. Искажения входных признаков — Например, в одном из полей вместо десятичного значения приходит строка или ноль. Модель не понимает контекст и делает ошибочный прогноз.
2.Отсутствие валидации на этапе inference — Если данные не проходят базовую проверку перед подачей в модель, она работает на мусоре. А мусор на входе = мусор на выходе (GIGO).
3. Появление новых распределений (data drift) — В продакшн приходят значения, которых в трейне не было. Модель не обучалась на таких случаях и путается.
4. Неверная предобработка в проде — Самая частая причина: трансформации признаков в проде не совпадают с тем, как они делались в трейне. Всё — от разного кодирования категорий до забытых скейлеров.
🛠Как защититься
➡️ Внедрить валидацию входных данных (тип, диапазон, формат). ➡️ Использовать инвариантные признаки, устойчивые к мелким искажениям. ➡️ Настроить мониторинг данных на inference, чтобы ловить отклонения от трейна. ➡️ Автоматизировать регулярное переобучение с учётом новых поступающих данных. ➡️ Обеспечить идентичность пайплайнов: то, что в трейне — то и в проде.
🤔 Почему моя модель машинного обучения резко теряет точность после выхода в продакшн, хотя на тестах всё было отлично
Потому что модель обучалась на «чистом» датасете, а в продакшне сталкивается с реальными, грязными и непредсказуемыми данными.
🧩Типовые причины падения качества:
1. Искажения входных признаков — Например, в одном из полей вместо десятичного значения приходит строка или ноль. Модель не понимает контекст и делает ошибочный прогноз.
2.Отсутствие валидации на этапе inference — Если данные не проходят базовую проверку перед подачей в модель, она работает на мусоре. А мусор на входе = мусор на выходе (GIGO).
3. Появление новых распределений (data drift) — В продакшн приходят значения, которых в трейне не было. Модель не обучалась на таких случаях и путается.
4. Неверная предобработка в проде — Самая частая причина: трансформации признаков в проде не совпадают с тем, как они делались в трейне. Всё — от разного кодирования категорий до забытых скейлеров.
🛠Как защититься
➡️ Внедрить валидацию входных данных (тип, диапазон, формат). ➡️ Использовать инвариантные признаки, устойчивые к мелким искажениям. ➡️ Настроить мониторинг данных на inference, чтобы ловить отклонения от трейна. ➡️ Автоматизировать регулярное переобучение с учётом новых поступающих данных. ➡️ Обеспечить идентичность пайплайнов: то, что в трейне — то и в проде.
The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.
How Does Bitcoin Mining Work?
Bitcoin mining is the process of adding new transactions to the Bitcoin blockchain. It’s a tough job. People who choose to mine Bitcoin use a process called proof of work, deploying computers in a race to solve mathematical puzzles that verify transactions.To entice miners to keep racing to solve the puzzles and support the overall system, the Bitcoin code rewards miners with new Bitcoins. “This is how new coins are created” and new transactions are added to the blockchain, says Okoro.
Библиотека собеса по Data Science | вопросы с собеседований from ru